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The first instability in spherical Taylor-Couette 
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In this paper continuation methods are applied to the axisymmetric NavierSfokes 
equations in order to investigate how the stability of spherical Couette flow depends 
on the gap size Q. We find that the flow loses its stability due to symmetry-breaking 
bifurcations and exhibits a transition with hysteresis into a flow with one pair of 
Taylor vortices if the gap size is sufficiently small, i.e. if cr Q Q=. 

In wider gaps, i.e. for vB < r~ Q nB, both flows, the spherical Couette flow and the 
flow with one pair of Taylor vortices, are stable. We predict that the latter exists 
in much wider gaps than previous experiments and calculations showed. Taylor 
vortices do not exist if Q > vF. The numbers gB and gF are computed by calculating 
the instability region of the spherical Couette flow and the region of existence of the 
flow with one pair of Taylor vortices. 

1. Introduction 
We consider a flow of a viscous incompressible fluid contained between two 

concentric spheres. The outer sphere is fixed while the inner one rotates. If the inner 
sphere rotates slowly the flow contains two large cells ranging from each pole to the 
equator. This flow is uniquely determined by the Reynolds number, and is called 
‘spherical Couette flow’ (cf. figure 1). By increasing the Reynolds number, Khlebutin 
(1968), Sawatzki & Zierep (1970), Wimmer (1976) and Belyaev et al. (1980) observed 
in their experiments a transition into a flow with one pair of Taylor vortices a t  the 
equator if the gap size v = (R,-R,)/R, is less than 0.19. A transition back into 
spherical Couette flow occurs if the Reynolds number is reduced. No hysteresis was 
observed, i.e. both transitions occurred at  the same Reynolds number. 

The transition behaviour is found to depend strongly on the gap size Q. For 
Q = 0.24, for example, Yavorskaya et al. (1980) observed a hysteresis in the transition 
to and from the flow with one pair of Taylor vortices. For Q = 0.30 they were able 
to produce the Taylor-vortex flow by rotating both spheres and stopping the outer 
one when the vortices appeared. They observed a transition back into spherical 
Couette flow if the Reynolds number was decreased. However, the Taylor-vortex flow 
cannot be produced by rotating only the inner sphere. In that case, the spherical 
Couette flow remains stable until it encounters the so-called ‘ wide-gap instability ’ 
(Yavorskaya et aZ. 1980). No Taylor vortices have been observed for Q 2 0.40. 

Many more flow modes have been observed besides the spherical Couette flow and 
the flow with one pair of Taylor vortices. There are modes with more than one pair 
of Taylor vortices, with oscillating Taylor vortices, with wavy Taylor vortices, etc. 

t Present address: MBB Transport- und Verkehrsflugzeuge, Abt. TE 213, Huenefeldstr. 1-5, 
2800 Bremen 1, West Germany. 
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FIQURE 1. Streamlines of the spherical Couette flow at Re = 640 and of the flow with one pair 
of Taylor vortices at Re = 660. u = 0.18. 

The flow observed in the experiments is uniquely determined by the Reynolds number 
if the gap is sufficiently small or ‘narrow’. However, it is non-unique, i.e. different 
flow modes can exist at the same Reynolds number, if the gap is ‘medium-sized’. No 
Taylor vortices are detectable in ‘wide’ gaps. 

We study the first transition, i.e. the transition from spherical Couette flow into 
the flow with one pair of Taylor vortices in medium-sized gaps, and investigate how 
the transition phenomena depend on the gap size CT. 

In previous calculations (Schrauf 1982, 1983) the spherical Couette flow and the 
flow with one pair of Taylor vortices were obtained for several gap sizes by tracing 
the axially and equatorially symmetric solutions of the NavierStokes equations with 
a continuation method (Keller 1977). It is possible to identify the transition from 
Taylor-vortex into spherical Couette flow with a fold point of the solution branch. 
There was no indication for the reverse transition. 

Tuckerman (1983) showed that the spherical Couette flow loses its stability owing 
to equatorially asymmetric disturbances. Without exploiting equatorial symmetry 
we detected a symmetry-breaking bifurcation point at  which a branch with non- 
equatorially symmetric solutions with one pair of Taylor vortices bifurcates from the 
equatorially symmetric Couette flow. The Couette flow becomes unstable at the 
bifurcation point (Schrauf & Krause 1984). 

In  this paper, the influence of the gap size on the first instability of spherical 
Couette flow has been investigated in order to explain the phenomena observed in 
the experiments and to determine the instability region of the spherical Couette flow 
and the region of existence of the flow with one pair of Taylor vortices. We 
hypothesize, furthermore, that the instability in the supercritical spherical Couette 
flow is caused by symmetry-breaking bifurcations. 
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FIQURE 2. The geometry of the spherical annulus. 

2. Governing equations and numerical methods 
The geometry of the spherical annulus is shown in figure 2. An incompressible fluid 

with constant kinematic viscosity Y fills the gap between the two concentric spheres 
with radii R, < R,. The inner sphere rotates with angular velocity w .  Since we 
consider only axisymmetric flows, we can introduce a stream function p, a vorticity 
function c, and an angular velocity function 6 as follows (Krause & Bartels 1980; 
Bonnet & Alziary de Roquefort 1976; Munson & Joseph 1971 ; Rosenhead 1963 ; Lamb 
1932; Stokes 1842): 

Because the Taylor vortices occur near the equator, we rediscover the use of the 
variable 7 = cos 8 instead of the colatitude 8. We define 
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and analogously [ ( r ,  7 )  and @(r, 7 ) ,  and obtain the equations 

-DDe@+ Re { - Y, a,. + Y,. @,} = 0, 

where 
I 

a a7 ' J  (.),. = -, (*), = -. ar 

Choosing R, as characteristic length and wR, as characteristic velocity, the 
Reynolds number is, thus, 

Re = wR:/v. (3) 

The advantages of using the variable 7 instead of 8 are that the operator Da is 
symmetric and the matrix F,, which will appear later, has a much smaller dimension. 

The domain on which we solve (la-c) is 

g(a)  = { ( r , 7 ) € g 2 :  1 Q T Q a, 1 2 7 2 -1) (4) 

gs(a) = { ( r , 7 ) € % ' :  1 Q T < a, 1 2 7 2 0). (44 

or, if only equatorially symmetric flows are considered, 

a is defined as 
R 

a = A = a + l .  

Both computational domains have been incorporated into our code. The boundary 
conditions are Stokes' no-slip conditions at the spheres 

Rl 

and the symmetry conditions at the poles 

@(r,  1) = 0, @(r ,  -1) = 0, 

m, 1) = 0, [ ( r ,  -1) = 0, 

Y ( r ,  1) = 0, Y ( r ,  -1) = 0. 

The conditions with 7 = - 1 are replaced by 

if only equatorially symmetric flows are to be calculated. 

evaluate the Poisson equation (1 c) and obtain 
There are no physical conditions for the vorticity function at the walls. Hence, we 
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The equations (la-c) are discretized by central differences of second order. The 
conditions (5) and (7) are approximated either by Thom’s formula 

n 

or Jensen’s formula 

or Woods’ formula 

where ci = 6(1+ ( i -  1) Ar, (j- 1)  AT) and !Pi, respectively (Roache 1972). All three 
formula; are implemented in the code and can be interchanged easily. It can be shown 
(Schrauf 1983) that the system of equations ( lb ,c )  and (8) is equivalent to a 
second-order difference approximation of the fourth-order differential equation which 
is obtained by eliminating the vorticity function 6 from ( l b )  and ( lc ) .  Hence, 
second-order accuracy for the stream function is obtained if the equations (1 b, c), and 
(8) are solved simultaneously, although formula (8) by itself is formally of first order. 
We found that only the discretization error, but not the bifurcation behaviour of 
the solutions, depends on the choice of the formula for the wall vorticity. Most of 
the calculations presented in this paper are done with Jensen’s formula. 

For computations on the smaller domain 9&), the Neumann condition (6a) for 
the angular velocity function @ is approximated by 

The difference equations form a system of nonlinear algebraic equations. They 
depend on the two parameters Re and a. For convenience we denote the system by 

f ( u ,  Re, a) = 0, (12) 

where u is the N-dimensional vector that consists of the values of the functions @, 6, Y 
at the gridpoints. The dimension of u is 

N =  (J-2) [3(1-2)+2]+1-2, 

where I is the number of gridpoints in r-direction and J the number in the direction. 
The solution of the system (12) is a two-dimensional surface in %N+2. Parts of this 

surface are calculated by determining its intersections with hyperplanes Re = const. 
or a = const., i.e. by computing solution curves of 

(13a, b)  f ( u ,  Re,a = const.) = 0, F(u, Re = const.,a) = 0. 

The folds of the surface (cf. figure 3) are calculated as well. 

abbreviated 
Because the problems (13a, b) both depend only on one parameter, they can be 

F(u,h) = 0 (14) 
where A stands for either Re or a. 
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FIQURE 3. A two-dimensional surface in ! R N + l + I  with a fold curve F. 

The solution curves of (14) can be parameterized by A. That is, we can try to 
calculate A H  u(A) with an Euler-Newton method. However, this method fails in fold 
points where the Jacobian F,[u,A] is singular. Therefore, a new parameter s is 
introduced by 

"u, A, s] = iC(so)* [u(s) -u(s,)] +A@,) [A@)  - A(,,)] - ( 8 - 8 , )  = 0 (15) 

(Keller 1977). The dot refers to differentiation with respect to S. Equation (15) is added 
to the system (14). The solution curves s H ( ~ ( s ) ,  A ( s ) )  of the larger system 

can be calculated by the Euler-Newton procedure 

d o ' ( S )  = Z ( S o ) + ( ~ - 8 0 ) k ( ~ o ) ,  

G,[z(")(s), S] &dn) = - G[dn)(s), S] 

Z(n+l)(S) = &(n) +&q,) 
In each Newton step a linear system with the matrix 

must be solved. This is equivalent to solving two systems with the matrix F,, so that 
the structure of F, can be exploited. This works even at fold points, where G, is regular 
but F, is singular (Keller 1982). 

In  order to calculate a fold of the solution surface, i.e. a curve consisting of fold 
points, the system 

(20a) 

is augmented by adding the definition of a simple fold of a solution curve of 
F(u, A, 7 = const.) = 0: 

F(u, A, 7 )  = 0 

(F,(u, A ,  7))'II. = 0, (FA(% A, 7))' ~ = 1. (20h c) 

( A , 7 )  is either (Re ,a )  or (a, Re) so that folds with respect to Re or with respect to 
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a can be calculated. Furthermore, an arclength parameter s for the fold curve can 
be introduced by an additional equation 

N(u, A, 7 ,  S )  = 0. (204  
The equations (2Oa-d) form the nonlinear system 

y = (u, A, +, 7 )  E % N + l + N + l .  

The fold curve st+(u(s),A(s),7(s)) is a projection of the solution curve 
s I+ y(s) = (u(s), A@),  @(s), ~ ( 5 ) )  of (21). The latter can be calculated by an EulepNewton 
method. A system with the matrix 

must be solved at each Newton step. In  Schrauf, Fier & Keller (1985) we show that 
this is equivalent to solving two systems with the matrix F, and three with the 
transposed matrix F,T, and that all five systems can be solved by performing only 
one LU-decomposition of F,. 

3. The instability region of the spherical Couette flow 
Spherical Couette flow exhibits a transition into an axially and equatorially 

symmetric flow with one pair of Taylor vortices at the equator if 
v = (R,-R,) /R,  6 0.19. The reverse transition occurs at approximately the same 
Reynolds number. No hysteresis is observed. The critical Reynolds number can be 
calculated by empirical formulas proposed by Khlebutin (1968), 

Re, = 4 9 . 0 d ,  

Re, = 41.3(1 +cr) d. 
or Belyaev et al. (1980), 

The transition does exhibit hysteresis for the larger gap size v = 0.2413. Belyaev 
et al. produced the flow with one pair of Taylor vortices for CT = 0.3038. To obtain 
this flow, they rotated both spheres simultaneously and stopped the outer one when 
the Taylor vortices appeared. They could not generate this flow by rotating only the 
inner sphere. Taylor vortices have not yet been observed for r 2 0.4. 

Previous calculations for v = 0.1765, or 7 = RJR, = 0.85 (Schrauf & Krause 
1984), showed that the transition from spherical Couette flow to the mode with one 
pair of Taylor vortices can be explained by a symmetry-breaking bifurcation (Point 
P in figure 4). The transition back to the basic flow coincides with a fold point (Point 
A in figure 4) at a slightly lower Reynolds number. The resulting hysteresis, however, 
is too small to be observed in experiments. 

We now study how the location of the symmetry-breaking bifurcation point varies 
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FIGURE 4. Bifurcation diagram tsken from Schrauf & Krause (1984). The solution branch I 
represents the spherical Couette flow, the branches I1 and I11 the equatorially symmetric and the 
non-equatoridly symmetric 00w with one pair of Taylor vortices. 

with 6. From this, the region in the (Re, @-plane in which the spherical Couette flow 
is unstable can be determined. Then the curve with the fold points A mentioned above 
is calculated in order to determine the boundary of the region in which the flow with 
one pair of Taylor vortices exists and is stable. 

The finite-difference approximation perturbs the symmetry-breaking bifurcation 
of the spherical Couette flow. The calculated solution branches do not intersect as 
do the solid lines in figure 5,  but behave like the dashed lines, i.e. the bifurcation is 
perturbed. For Q = 0.1800 we calculate with 21 x 121 gridpoints 

Re, = 659.9720029 Re, = 659.9720032 

and obtain JARe/Re( x 4.5. 10-lo. 

Although the perturbation of the bifurcation is hardly noticeable, it affects the 
choice of the numerical procedure because no available method allows following 
perturbed bifurcation points directly. Therefore, it is done indirectly by keeping one 
parameter constant and continuing in the other, i.e. we calculate solution branches 
of the problems (13a) or (13b). The bifurcation is detected by a change in the sign 
of the determinant of the Jacobian. 

In the first series of calculations u is kept constant, and the solution branch of th,e 
spherical Couette flow is calculated using 21 x 121 gridpoints. This branch exhibits 
bifurcations for Q < 0.2315, but not for r.r = 0.2320. If the maximum gap size for 
which there is a bifurcation is denoted by vB, we find that 0.2315 < Q, < 0.2320. 
The loci of the bifurcation points are plotted as line I in figure 6. For Q < 0.17 we 
obtain good agreement with formula (24), shown as curve 111. The Reynolds numbers 
of the computed bifurcation points and the ones calculated with formula (24) differ 
by less than 2.4%. This difference increases to 5.2 % for cr = 0.19. 

The upper part of curve I is calculated as follows: Choosing Q > crB, we calculate 
the branch of the spherical Couette flow for this gap size. The points on this branch 
are then used as initial values for arclength continuation in a, i.e. keeping the 
Reynolds number constant, we calculate the solution branches of (13b). These 



First imtability in spherical Taylor-Couette $ow 295 

I \  

c Re 
Re, Re, 

FIQTJRE 5. A perturbed bifurcation. 
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FIQURE 6. Curves I and I1 are projections of symmetry-breaking bifurcation points calculated with 
21 x 121 and 11 x 61 gridpoints respectively. Curve I11 shows the critical Reynolds numbers 
obtained with formula (24). Curve IV is the projection of a fold curve calculated with 21 x 121 
gridpoints. +, Khlebutin (1968); +, Wimmer (1976); +, Yavorekaya et d. (1980). 

Re 

branches also have symmetry-breaking bifurcation points whose loci form the upper 
part of curve I. 

In order to examine the influence of the mesh size, both series of calculations are 
repeated with 11 x 61 gridpoints. The results are plotted as curve I1 in figure 6. The 
upper part of curve I1 coincides with curve I. The lower part of curve I1 is shifted 
towards higher Reynolds numbers, so that the region bounded by curve I1 is 
contained in the region bounded by curve I. It is expected that the latter region will 
be contained in the region determined by using more than 21 x 121 gridpoints. Thus, 
the corresponding region for the solution of the differential equations is a superset 
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FIQURE 7. The experimentally determined lower boundary of the region of existence of the 
supercritical basic flow, curve A, is compared with the projection of symmetry-breaking bifurcation 
points, curve B. Curve C is the upper boundary of the region of existence of the subcritical Couette 
flow. 

of the region bounded by curve I. As curve I consists of bifurcation points at  which 
the spherical Couette flow becomes unstable to axisymmetric disturbances, we 
conclude that this flow is unstable, at least in the region bounded by curve I. 

An axially and equatorially symmetric flow without Taylor vortices can be 
produced experimentally by a fast acceleration of the inner sphere. This flow is steady 
and is called ‘supercritical spherical Couette flow’ because it exists only at higher 
Reynolds numbers. It exhibits a transition into an oscillating mode if the Reynolds 
number is decreased quasi-stationarily . 

In  Schrauf t Krause (1984), we calculated three branches of flows without Taylor 
vortices for u = 0.1765 and stated that one of them represents the supercritical 
Couette flow. We could only compare the calculated streamlines with those observed 
in experiments. By using arclength continuation in Re and in u we see that the branch 
of the spherical Couette flow and the branch we chose belong to the same sheet of 
the solution surface in the (u, Re, u)-space. This confirms that our previous choice was 
correct. 

The supercritical Couette flow at (Re, a) = (1500.0,0.1765) can be connected with 
the spherical Couette flow at (Re,u)  = (1.0,0.1765) by paths along which the flow 
remains stable with respect to axisymmetric disturbances. One path, for example, 
has a projection into the (Re, u)-plane that consists of straight line segments 
connecting the vertices (1.0,0.1765), (l.O,O.3000), (1500.0,0.3000), (1500.0,0.1765). 

For each fixed u = ro < U, the supercritical spherical Couette flow becomes 
unstable with respect to axisymmetric disturbances at  the symmetry-breaking 
bifurcation point whose projection in the (Re, a)-plane is given by the intersection 
of the line r = uo and the upper part of curve I. The question arises of whether this 
bifurcation describes the transition from this flow into the oscillating mode. 

The most precise measurement of the transition Reynolds number was performed 
by I. M. Yavorskaya (1984, private communication). She determined Re, = 1294 f 
10 for u = 0.1924. We calculated Re, = 1111.8, which is much smaller than Re,. 
However the influence of imperfections in the spheres is very large since ARelAu x 
18000. Using her data, we estimate the relative error in u to be 0.5% and conclude 
that the error in the measured transition Reynolds number caused by the inexactness 
of the spheres is about ARe x 90. 

In figure 7 our results are compared with the few experimental results available. 
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Curve A is the lower boundary of the region in which the supercritical Couette flow 
is stable as determined by Belyaev et al. (1980). The three diamonds on the curve 
A indicate their measurements. 

The open circle represents the new measurement of Yavorskaya. The loci of the 
symmetry-breaking bifurcations are shown as curve B. They follow qualitatively the 
experimentally determined curve. It can be assumed that the difference is caused by 
a systematic error. We hypothesize that the transition of the supercritical basic flow 
is described by the symmetry-breaking bifurcations. However, due to three- 
dimensional effects, the instability region of the supercritical spherical Couette flow 
could be a superset of the region bounded by curve I. 

In previous calculations a fold in the branch of the supercritical basic flow for 
u = 0.1765 was obtained (Point E in figure 1 of Schrauf & Krause 1984). In order 
to show that the transition cannot be caused by this fold point, we have calculated 
the corresponding fold for a = 0.1924 using equatorial symmetry and different grids : 

gridpoints Re, 
11 x61  1065.3 
16 x 91 1029.2 
21 x 121 1017.6 
31 x 181 1009.7 

We obtain Re, = 1003.4 by Richardson extrapolation and insert ( R e p )  = 
(1003.4,0.1924) as point E in figure 6 to show that the Reynolds number of the fold 
point is less than the Reynolds number of the symmetry-breaking bifurcation 
point at which the stability changes. Therefore, the transition cannot be caused by 
the fold. 

4. The region of existence of the flow with one pair of Taylor vortices 
The solutions with one pair of Taylor vortices at the equator form a two-dimensional 

surface in StN+l+l. This surface is bounded by a fold curve. The boundary of the region 
in which the flow with one pair of Taylor vortices exists is therefore the projection 
of the fold onto the (Re, u)-plane. 

The fold has been calculated with the algorithm described in $2. Because we already 
know that the flow in the fold is symmetric with respect to the equator, the size of 
the matrix F, can be reduced by restricting ourselves to equatorially symmetric flows. 
However, it  is necessary to check all calculations by repeating them without 
exploiting equatorial symmetry. 

Using21 x 121 gridpoints, wecalculateafoldwhoseprojectiononto the (Re, a)-plane 
is plotted as curve IV in figure 8. The streamlines of several flows on the fold are 
plotted in figure 9. Without imposing equatorial symmetry, a slightly shifted curve, 
part of which is shown as curve IV in figure 6, is obtained. If only 11 x 61 gridpoints 
and the symmetry condition are used, we obtain curve V in figure 8, which agrees 
well with curve I V  for B < 0.2. The difference in Reynolds number here is less than 
0.3 % but increases with u. This is due to the fact that the radial mesh size AT = Ar(u) 
increases with u if the number of radial gridpoints is kept constant, so that the 
difference approximation becomes worse. The solution of the difference equations fails 
to approximate the solution of the differential equations if u > 0.5 and only eleven 
radial gridpoints are used. 

In order to analyse the behaviour of the fold if the mesh is refined, we calculate 
two fold points on the upper part of the fold curve with 41 x 241 gridpoints. The points 
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FIGURE 8. Curve I is the projection of symmetry-breaking bifurcation points also shown in figure 6. 
The curves IV and V are projections of fold curves calculated with 21 x 121 and 11 x 61 gridpoints 
respectively. The two squares indicate fold points calculated with 41 x 421 gridpoints. The dotted 
line bounds the region of the wide-gap instability. 
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FIQURE 9. Streamlines of flows on the fold IV of figure 8 calculated with 21 x 121 gridpoints. 
'(a) Re = 1O00, d = 0.1289; (a) 645, 0.18; (c) 472, 0.2413; (d )  409, 0.3038; (e) 477, 0.4. 
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(4 (b) 

FIGURE 10. Streamlines of the two flows of figure 8 that are calculated with 41 x 241 gridpoints. 
(a )  Re = 1O00, Q = 0.4673; ( b )  1500, 0.4963. 

are represented by squares in figure 8; the streamlines of the solutions are plotted 
in figure 10. 

In  order to study the topology of the solution surface, intersections with hyperplanes 
Re = const. are determined by calculating solution curves of (13b). We find that these 
cuts are closed curves in 9IN+'+'. The streamlines of the solutions along one of these 
loops are shown in figures 11-13. 

If the solution surface is cut along the fold curve, we get two sides, side A and side 
B. Side A consists of stable solutions which are observed in experiments if u < 0.3038. 
For example, the first, second and third streamline plots in figure 12 are flows 
obtained also by Wimmer (1976) and Belyaev et al. (1980). However, the fourth plot 
shows a flow which, although not observed in experiments, is connected to the flow 
of the third plot by a solution curve which preserves stability. Therefore, the fourth 
flow either can be produced in experiments also, or is unstable due to three-dimensional 
disturbances. Side B consists of unstable solutions. The change of stability occurs 
at the fold points. The streamlines of the solutions in these points are plotted in 
figure 11.  

Yavorskaya et al. (1980) detected a weak, three-dimensional instability in spherical 
Couette flow. They called it ' wide-gap instability ', because i t  occurs only in wide gaps, 
i.e. in gaps in which no Taylor vortex flow exists; in medium-sized gaps the spherical 
Couette flow becomes unstable at much lower Reynolds numbers, and there is a 
transition into the flow with one pair of Taylor vortices, as discussed above. The region 
in which the wide-gap instability appears is bounded by the dotted curve in 
figure 8. 

Assuming that all solutions on side A are stable, we estimate how far the fold 
curve must be calculated in order to determine the widest gap in which Taylor 
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FIGUIUC 11.  Streamlines of the flows at the intersections of the loop at Re = 800 with the fold 
curve. (a)  u = 0.152; (a) 0.4695. 

FIGURE 12. Streamlines of flows on the stable side of the loop at Re = 800. (a )  u = 0.18; 
(b )  0.2413; (c) 0.3038; (d) 0.4. 
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FIGURE 13. Streamlines of flows on the unstsble side of the loop at Re = 800. (a) u = 0.4; 
( b )  0.3038; (c) 0.2413; (d) 0.18; (e) 0.1539. 

vortices appear. A reasonable assumption is that the flow with one pair of Taylor 
vortices becomes unstable due to three-dimensional disturbances at Reynolds 
numbers near the critical Reynolds numbers of the wide-gap instability. Therefore 
it is sufficient to calculate the upper part of the fold curve I V  in figure 8 up to 
Re = 1500. We use the two fold points with 41 x 241 gridpoints, improve their 
a-coordinates by Richardson extrapolation, and obtain (Re, a) = (1000.0,0.4587) and 
(1500.0,0.4742). Hence, the widest gap for which the flow with one pair of Taylor 
vortices exists has a width of nF x 0.45-0.48. 

The region of existence of this flow is larger than the instability region of the 
spherical Couette flow, and we obtain the following results: 

In gaps with a < gB, 0.2315 < aB < 0.24, the spherical Couette flow becomes 
unstable and exhibits a transition into the flow with one pair of Taylor vortices. The 
transition back to the spherical Couette flow occurs at a lower Reynolds number, so 
that there is hysteresis. 

For aB < a < crF the spherical Couette flow remains stable (until it encounters the 
wide-gap instability). The flow with one pair of Taylor vortices also exists; however, 
it cannot be produced by rotating only the inner sphere. 

Taylor vortices do not exist if a > aF. 
We calculate ARe for the hysteresis mentioned above by comparing the Reynolds 

number Re, of the symmetry-breaking bifurcation points with the Reynolds number 
Re, of the fold for the same gap size a < aB. The results are shown in table 1. 

The only hysteresis that was observed in the experiments is the one reported by 
Belyaev et al. (1980) for the gap size a = 0.2413. They determined the Reynolds 
number of the transition to the flow with one pair of Taylor vortices as Re = 520 and 
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U 

0.1150 
0.1222 
0.1306 
0.1409 
0.1536 
0.1702 
0.1931 
0.2030 
0.2147 
0.2289 

Re, 
1200.0 
1100.0 
1Ooo.o 
900.0 
800.0 
700.0 
600.0 
566.7 
533.3 
500.0 

Re, 
1201.3 
1101.5 
1001.8 
902.2 
803.1 
705.2 
611.5 
583.4 
560.6 
561.9 

ARe 

1.3 
1.5 
1.8 
2.2 
3.1 
5.2 
11.5 
16.7 
27.2 
61.9 

TABLE 1. The Reynolds numbers of the fold and of the symmetry-breaking bifurcation point 
calculated with 21 x 121 grid points on the full gap. 

the Reynolds number for the transition back to spherical Couette flow M Re = 463. 
For this hysteresis we have ARe = 57. 

With 21 x 121 gridpoints we obtain for u = 0.2290 a hysteresis with ARe = 62. Here 
we reach qualitative agreement. However, it is important to recall that the curves 
I and IV in figure 6 shift if more gridpoints are used. 

Recently, Yavorskaya (1984, private communication) repeated the experiment and 
detected a hysteresis with ARe = 0.70+0.25 for the gap size u = 0.1096. Again, we 
have qualitative agreement with our results. However, the parameters of her 
experiment lie in the region cr d 0.15 and Re 2 1200. This region has been excluded 
from our presentation because the solution surface with one pair of Taylor vortices 
interacts in a very complicated manner with two more sheets. 
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